About this document

Version information

This document provides instructions for installing, using, and maintaining Vaisala MGP241 Multigas Probe for carbon dioxide and humidity measurement.

Document versions (English)

Document code	Date	Description
M213080EN-A	October 2024	First version.

Documentation conventions

WARNING! Warning alerts you to a hazardous situation that, if not avoided, could result in death or serious injury.

CAUTION! Caution alerts you to a hazardous situation that, if not avoided, could result in minor or moderate injury.

NOTICE! Notice alerts you to a situation that, if not avoided, could result in the product to be damaged or important data to be lost.

Highlights important information on using the product.

Trademarks

Vaisala® and CARBOCAP® are registered trademarks of Vaisala Oyj.

All other product or company names that may be mentioned in this publication are trade names, trademarks, or registered trademarks of their respective owners.

Product overview

Introduction to MGP241 Multigas Probe

The MGP241 probe measures carbon dioxide (CO₂) and humidity (H₂O vapor) in demanding conditions. MGP241 measures carbon dioxide and humidity in vol-% or ppm by volume units, or alternatively dew point temperature (T_d) and frost point temperature (T_f). The patented CARBOCAP infrared technology enables simultaneous detection of multiple gases unlike the traditional non-dispersive infrared (NDIR) measurement technique. This allows compensation for sensor drift, sensor aging, and for any cross-interference effects between measured gases. Calibration gases are not needed for routine operation; a functional check and drift check every 12 months is recommended.

MGP241 measures gases directly in the process without a need for drying or other sample treatment. This simplifies the installation and minimizes the footprint of the measurement solution compared to traditional gas analyzers. The rapid measurement cycle takes only seconds, providing direct real time measurements for process control and monitoring. The CO₂ measurement can be shown either as wet basis or dry basis values. Thanks to the built in temperature and pressure compensation algorithms, and the CARBOCAP infrared technology, the measurement is stable and reliable across a wide range of process and environmental conditions.

The MGP241 probe has 3 4–20 mA analog outputs for CO_2 and H_2O vapor concentrations and for retransmission of analog input, as well as a 4–20 mA analog input for external pressure or temperature signal used for compensation. The probe also offers Modbus RTU protocol for digital connectivity. For easy-to-use access to configuration, diagnostics, and calibration and adjustment functionalities, the MGP241 probe can be connected to Vaisala Insight PC software with a USB cable accessory, and it can also be connected to Indigo host devices: Indigo80, Indigo300, and Indigo520.

MGP241 basic features and options

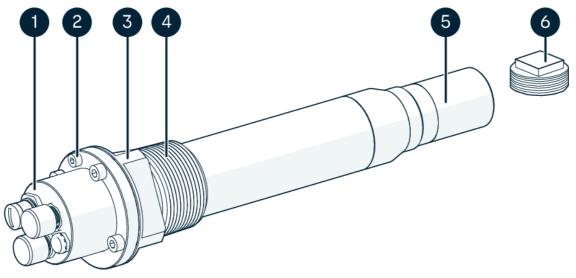
- Available measurement parameters: carbon dioxide (CO₂) and humidity (H₂O vapor)
- Standalone probe with digital Modbus® RTU over RS-485 and 3 analog outputs (4–20 mA)
- Analog input (4-20 mA) for external temperature or pressure compensation for more accurate measurement
- Compatible with Vaisala Insight PC software and Vaisala Indigo host devices

Measurement parameters

MGP241 measurement parameters

Parameter	Unit	Measurement range
Carbon dioxide (CO ₂)	Volume-%	0–100 vol-%
Water vapor (H ₂ O)	 Volume-% Dew point and frost point temperature 	 0–25 vol-% -10 +60 °C (+14 +140 °F)

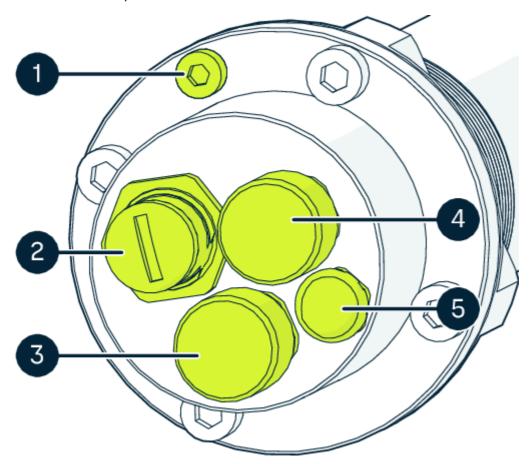
Wet basis and dry basis measurement output


MGP241 carbon dioxide and water vapor measurements can be shown either as wet basis or dry basis values. The wet basis / dry basis measurement output selection is made when ordering the probe, and can be configured with Vaisala Insight PC software or Modbus.

Connectivity to Vaisala Insight software

The probe can be connected to Vaisala Insight software using a Vaisala USB cable (item code 257295). With the Insight software, you can:

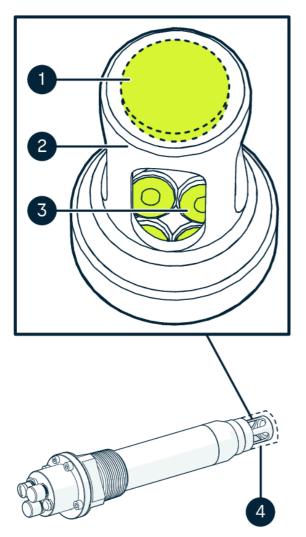
- Calibrate and adjust the measurement.
- See device information and status.
- See real-time measurement.
- Configure serial communication settings, analog input and output parameters and scaling, and environmental compensations.


MGP241 probe parts

MGP241 probe parts

- 1 2 Cable connection ports
- 3 4 5
- Grounding point Tightening nut: only tighten from the tightening nut when installing (wrench size: 50 mm (1.97 in)) 1.5 in male NPT thread: **never install to any other thread type than 1.5 in female NPT thread** Probe filter
- 6 1.5 in NPT thread test plug

Cable connection ports



MGP241 cable connectors

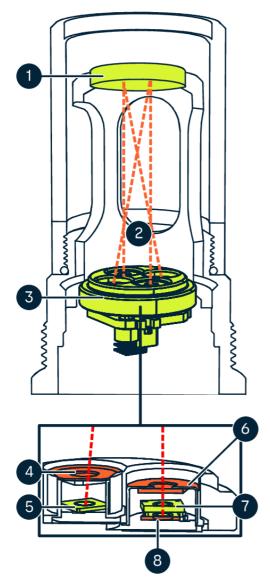
- 1

- M4 ring terminal: grounding point M12-4F port: analog input M12-5M port: used for powering and digital output M12-8M port: used for powering and analog outputs Breather plug: do not adjust 2 3 4 5

Measurement principle

The Vaisala CARBOCAP® sensor used in the probe is a silicon-based, non-dispersive infrared (NDIR) sensor for the measurement of carbon dioxide (CO₂), and humidity (H₂O).

Probe cuvette with mirror and sensor chips


- 1 Mirror
- 2 Cuvette
- 3 Sensor chips under TO5 packages
- 4 Probe filter covering the cuvette

NOTICE! The probe filter must be in place when the probe is inserted into the process for the instrument to function as intended.

The sensitivity to gases is based on absorption of infrared light at a characteristic wavelength. During measurement, infrared light is routed through the cuvette that contains the gas to be measured. A mirror reflects the light from the cuvette to thermopile detectors that measure the light intensity at a wavelength determined by Fabry–Pérot interferometer (FPI) and a band pass filter.

The measurement consists of two steps: first, the FPI is electrically tuned so that its pass band coincides with the characteristic absorption wavelength of the measured gas and the signal is recorded. Second, the pass band is shifted to a wavelength where no absorption occurs in order to get a reference signal. The ratio of these two signals, one at the absorption wavelength and the other at the reference wavelength, gives the fraction of light absorption from which the gas concentration is calculated. Measuring the reference signal compensates the possible effects of sensor aging and signal attenuation due to dirt on optical surfaces, making the sensor very stable over time.

TO5 packages with hermetic windows are used to protect the sensor chips from moisture and contamination.

Measurement in the measurement cuvette

- 1 Mirror
- 2 Light absorbed by the measured gases
- 3 Sensor chips under TO5 packages (see items 4–8)
- 4 Hermetic window
- 5 Thermopile detector
- 6 Hermetic window
- 7 Fabry–Pérot interferometer
- 8 Light source (microglow)

Safety

This product has been type-tested for safety. Note the following precautions:

CAUTION! To avoid compromising the leak tightness of the installation:

- Ensure that the thread type of the installation port is 1.5 in female NPT. If unsure, verify the thread type with the 1.5 in NPT thread test plug.
 Apply PTFE tape to the 1.5 in male NPT thread of the probe as instructed in Installing the probe, and make sure
- Apply PTFE tape to the 1.5 in male NPT thread of the probe as instructed in Installing the probe, and make sure that the PTFE tape seal has not been damaged by rotating the probe open (counter-clockwise) in the installation port.

Regulatory statements

FCC Part 15 compliance statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that the interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

CAUTION! Changes or modifications to this equipment not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

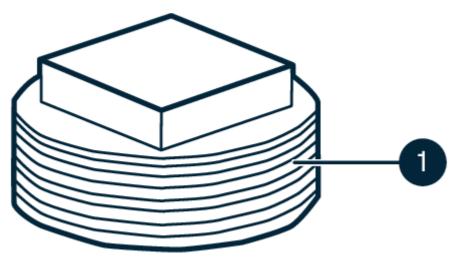
Canada ICES-3 / NMB-3 compliance statement

This Class B digital apparatus complies with Canadian ICES-003.

Cet appareil numerique de la classe B est conforme a la norme NMB-003 du Canada.

Installation

Installation overview


MGP241 can be installed either directly into the process (for example, through a flange or ball valve in the actual process pipeline), or using a flow-through adapter (for example, in a sampling line installation or when performing a field calibration).

When installing MGP241 series probes into pipes with condensing gas, it is typical for the probe to require some time to heat up and recover from condensation. Installing the MGP241 probe into pipes with condensing gas and intermittent flow is not recommended.

NPT 1.5 in thread test plug 257525SP

NOTICE! The correct thread type in which to install MGP241 is **1.5 in female NPT**. Installing into any other thread type can damage the equipment and compromise the leak tightness of the connection. If unsure, verify the thread type with the NPT 1.5 in thread test plug.

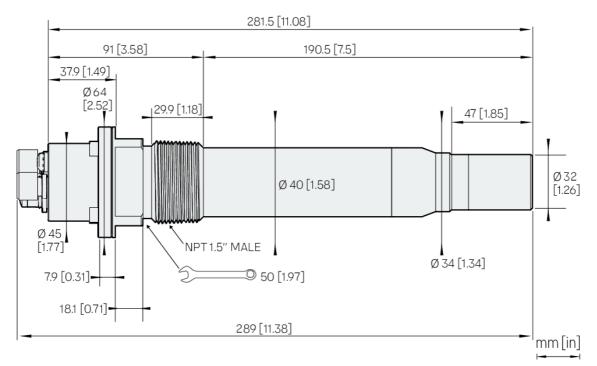
1. NPT 1.5 in male thread (same as on MGP241 connector)

NPT 1.5 in thread test plug

MGP241 comes shipped with an NPT 1.5 in male thread test plug (Vaisala order code: 257525SP). If you are uncertain about the thread type of the process connector you want to install MGP241 into, use the thread test plug to check that it fits into the process connector threads (that is, that the process connector thread type is **NPT 1.5 in female**).

Installation preparations

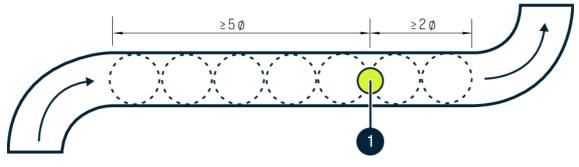
Before starting the installation, check the following:


Installing the MGP241 probe into pipes with condensing gas and intermittent flow is not recommended. When the probe is installed into a pipe with condensing gas, it is typical for the probe to require some time to heat up and recover from condensation.

- The MGP241 probe requires a dedicated 19–30 V DC power supply. In addition to the power supply input for the probe, each analog output must be externally powered.
- Review the information in Pressure compensation input options and make sure that you are using a pressure compensation input source that matches the settings of your MGP241 probe.
- Inspect the probe for any possible damage or dirt that could compromise the leak tightness of the device.
- If you install MGP241 to the process using a ball valve, note that it is necessary to use a 2 in ball valve and a reducer in order to accommodate the probe head (diameter 1.58 in).

The NPT threads of the probe can have sharp edges. To avoid injury when touching the threads, wear protective gloves.

The probe can cause a foot injury if dropped. To avoid foot injuries, wear protective shoes.


MGP241 dimensions

MGP241 dimensions

Recommended installation position on pipeline

Install the probe in a straight run of pipeline, \geq 5 pipe diameters downstream of the closest bend or other feature affecting gas flow, and \geq 2 pipe diameters upstream to the next bend or similar feature. For best results, use the orientation and installation depth of MGP241 threaded port installation example with recommended orientation and depth.

recommended MGP241 installation position on pipeline

1 Recommended MGP241 installation position on pipeline.

CAUTION! To avoid compromising the leak tightness of the installation:

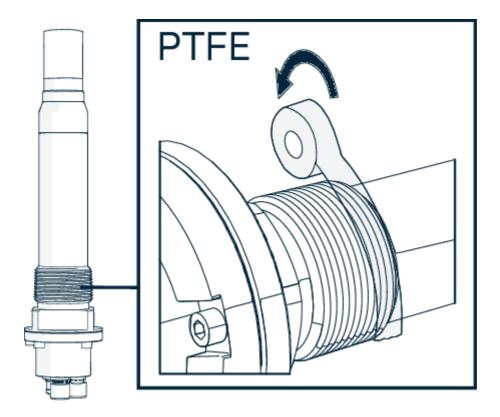
- Ensure that the thread type of the installation port is 1.5 in female NPT. If unsure, verify the thread type with the 1.5 in NPT thread test plug.
- Apply PTFE tape to the 1.5 in male NPT thread of the probe as instructed in Installing the probe, and make sure that the PTFE tape seal has not been damaged by rotating the probe open (counter-clockwise) in the installation port.

Pressure compensation input options

Accurate measurement readings require compensating for the pressure of the measured process. MGP241 does not measure pressure, meaning that it is mandatory to set up a pressure compensation input source. The following pressure input options are available:

- Pressure measurement received from a Modbus client through a serial line connection.
- Pressure measurement received from an external pressure measurement instrument through the M12-4F connector.
 The external pressure instrument connected to MGP241 must output 4–20 mA and use absolute pressure units. The default range for the input is 1–1.6 bar(a).
- If the process pressure is constant, a fixed pressure compensation value can be configured into use.

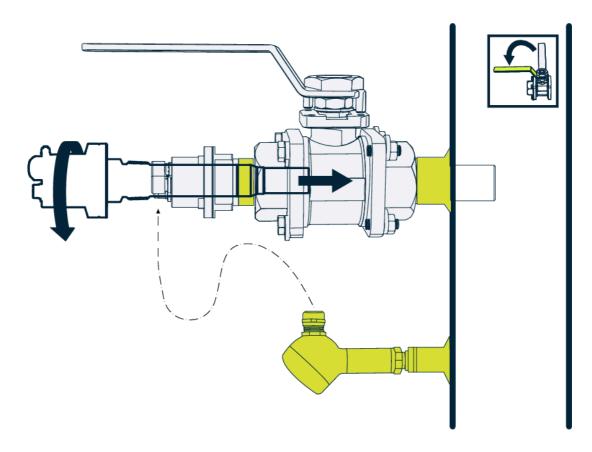
The pressure compensation input settings (for example, input type selection and input scaling) of MGP241 must match the pressure input source used in your application.


Installing the probe

- Adjustable wrench (or a similar suitable tool) for turning the tightening nut
- PTFE tape (wide) for the probe threads

NOTICE! The correct thread type in which to install MGP241 is **1.5 in female NPT**. Installing into any other thread type can damage the equipment and compromise the leak tightness of the connection. If unsure, verify the thread type with the NPT 1.5 in thread test plug.

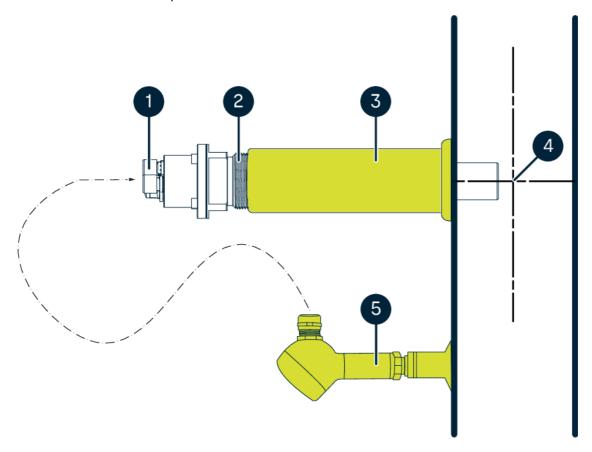
When you use a ball valve to install MGP241, it is necessary to use a 2 in ball valve and a reducer in order to accommodate the probe head (diameter 40 mm (1.58 in)).


- 1. Inspect the probe threads and remove any possible dirt.
- 2. Wrap PTFE tape in the direction of the thread spiral, starting from the first thread. Keep the edge of the tape parallel to the face of the thread while wrapping.

Do not tape beyond the edge of the threads or leave loose tape hanging.

3. Insert the probe into the **1.5 in female NPT** installation port and rotate it clockwise until it sits firmly in the port. Do not tighten the probe to full tightness, only enough to keep it securely in place when wiring.

An external pressure measurement instrument is shown here as an example of pressure compensation input options: for a description of alternative options, see Pressure compensation input options.



NOTICE! Rotating the probe open (counter-clockwise) after it has been installed into the port can tear the PTFE tape. Only adjust the position of the probe in the installation port by tightening (rotating clockwise).

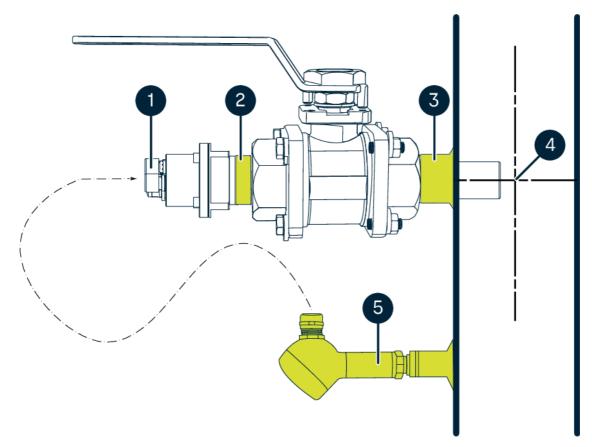
4. Connect input, output, and power supply cables to the cable connectors as required in your application.

5. See Finalizing installation for instructions on attaching grounding to the probe grounding point.

Installation into threaded port

You can install the MGP241 probe in a threaded port on the process pipeline.

An external pressure measurement instrument (item 5) is shown as an example of pressure compensation input options. For a description of alternative pressure compensation options, see Pressure compensation input options.


MGP241 threaded port installation example with recommended orientation and depth

1 External pressure or temperature sensor input wiring: use the M12-4F connector.

Power supply input, and RS-485 communication wiring: use the M12-5M connector.

Standard analog output, and power supply input: use the M12-8M connector.

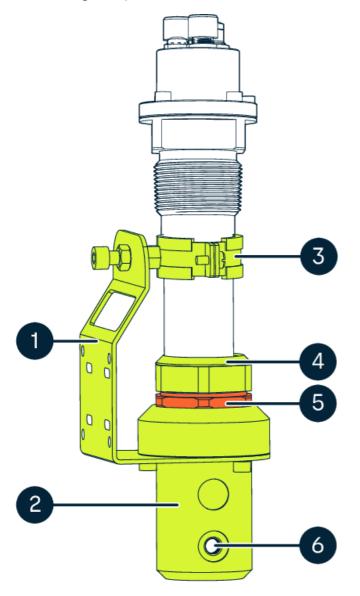
- 2 1.5 in male NPT thread on MGP241: never install to any other thread type than 1.5 in female NPT.
- 3 Threaded installation port with 1.5 in female NPT thread on the process pipe.
- 4 For best results, install MGP241 horizontally. The recommended position for the tip of the filter is within 1/3 of the pipe's diameter from the pipe centerline. If this is not achievable, other positions inside the pipe can be used as well. In smaller pipes, the installation depth can be adjusted by using an adapter such as a ball valve.
- 5 Example pressure compensation input option: an external measurement instrument connected to the MGP241 input terminals.

You can use a ball valve to install MGP241.

An external pressure measurement instrument (item 5) is shown as an example of pressure compensation input options. For a description of alternative pressure compensation options, see Pressure compensation input options.

MGP241 ball valve installation example with recommended orientation and depth

1 External pressure or temperature sensor input wiring: use the M12-4F port.


Power supply input, and RS-485 communication wiring: use the M12-5M port.

Standard analog output, and power supply input: use the M12-8M port.

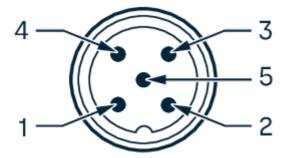
- 2 1.5 in male NPT thread on MGP241: **never install to any other thread type than 1.5 in female NPT**. When you use a ball valve to install MGP241, it is necessary to use a 2 in ball valve with a 1.5 in thread reducer in order to accommodate the probe head (diameter 1.57 in).
- 3 Threaded stub welded to the pipe wall for ball valve process connection.
- 4 For best results, install MGP241 horizontally. The recommended position for the tip of the filter is within 1/3 of the pipe's diameter from the pipe centerline. If this is not achievable, other positions inside the pipe can be used as well. In smaller pipes, the installation depth can be adjusted by using an adapter such as the ball valve in this example.
- 5 Example pressure compensation input option: an external measurement instrument connected to the MGP241 input terminals.

When you use a ball valve to install MGP241, it is necessary to use a 2 in ball valve and a reducer in order to accommodate the probe head (diameter 40 mm (1.58 in)).

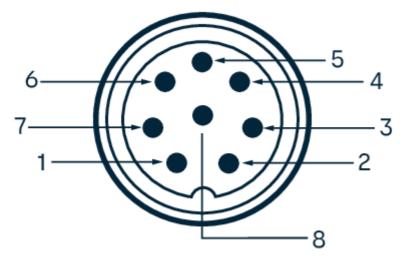
Flow-through adapter installation

You can install MGP241 with an flow-though adapter accessory (Vaisala order code: 258877).

MGP241 in flow-through adapter 258877


- 1
- Mounting plate (attach to mounting surface with screws or ties) Gas tube inlet port, G 1/8 (on the other side of the adapter) 2
- Clamp with 2 screws 3
- 4 Probe gland tightening nut
- Probe gland locknut: do not turn 5
- Gas tube outlet port, G 1/8 6

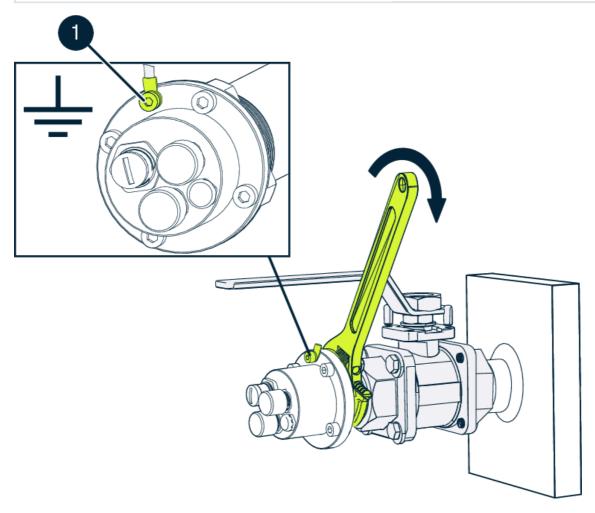
Wiring


M12 4-pin A-coded female connector pinout

Pin #	Function	Notes	Wire colors in Vaisala cables
1		4–20 mA, isolated, for external pressure or temperature sensor	Brown
2	Not connected		White
3	Analog input -	4–20 mA, isolated, for external pressure or temperature sensor	Blue
4	Not connected		Black

M12 5-pin A-coded male connector pinout

Pin #	Function	Notes	Wire colors in Vaisala cables
1		Operating voltage: 19–30 V	Proven
1	Voltage supply +	Current consumption: 80 mA typical, 500 mA max.	Brown
2	RS-485 -		White
3	Voltage supply -		Blue
4	RS-485 +		Black
5	rs gnd		Gray



M12 8-pin A-coded male connector pinout

Pin #	Function	Notes	Wire colors in Vaisala cables
1	Analog output 1 +		White
2	Analog output 3 -		Brown
3	Analog output 1 -		Green
4	Analog output 2 +		Yellow
5	Analog output 2 -		Gray
6	Analog output 3 +		Pink
7	Voltage supply +	Operating voltage: 19–30 V	Blue
8	Voltage supply -	Operating voltage: 19–30 V	Red

Finalizing installation

- Allen key (3 mm)
- Grounding screw set (screw, washer, ring terminal), provided
- $\geq 4 \text{ mm}^2 \text{ wire}$

1 Probe grounding point

- 1. Attach the mounting screw set to the probe grounding point. The correct order for the mounting screw set installation is ring terminal, washer, and screw. Tightening torque for the screw is 3 Nm.
- 2. Connect the MGP241 grounding point to the grounding rail of the installation site with $a \ge 4 \text{ mm}^2$ wire. Attach the wire to the ring terminal and press the terminal shut tightly.
- 3. Switch on the power supply input.

Technical data

MGP241 specifications

Measurement performance

Property	Carbon dioxide CO ₂	Water vapor H ₂ O	
Sensor	CARBOCAP®	CARBOCAP®	
Measurement unit	Volume-%, ppm _v	Volume-%, ppm _v , dew point °C, dew point °F	
Measurement range	0–100 vol-%	0–25 vol-%, –10 +60 °C (+14 +140 °F)	
Accuracy at +25 °C (+77 °F) and	0–90 vol-%: ±2 vol-%	0–25 vol-%: ±0.5 vol-%	
1013 mbar ¹²	90–100 vol-%: ±1 vol-%	0-23 V01-%. ±0.3 V01-%	
Repeatability ²	±0.4 vol-% at 95 vol-%	±0.1 vol-% at 2.5 vol-%	
	Compensated,	Compensated,	
	0—100 vol-%:	0–25 vol-%:	
	±0.1 % of reading / °C	±0.1 % of reading / °C	
Temperature dependence (typical)	Uncompensated,	Uncompensated,	
	0–100 vol-%:	0–25 vol-%:	
	±0.6 % of reading / °C	±0.4 % of reading / °C	
	Compensated,	Compensated,	
	0–100 vol-%:	0–25 vol-%:	
	±0.015 % of reading / mbar	±0.01 % of reading / mbar	
Pressure dependence (typical)	Uncompensated,	Uncompensated,	
	0—100 vol-%:	0–25 vol-%:	
	±0.25 % of reading / mbar	±0.20 % of reading / mbar	
Long-term stability	±2 vol-% / year	±2 vol-% / year	
Startup time ³	3 min		
Warm-up time ⁴	30 s ⁵		
Response time (T ₉₀)	90 s ⁶		
	90 s at \geq 0.5 l/min ⁶		
Response time with flow-through adap	ter (recommended: 0.5–1 l/min)	(recommended: 0.5–1 l/min)	

Powering

Property	Description/Value
Operating voltage	19–30 V DC
Dower consumption	Typical: 3 W
Power consumption	Maximum: 6 W
Current consumption	100–300 mA

Inputs and outputs

Property	Description/Value
Analog inputs	·
Number of analog inputs	1
Input type	4–20 mA, isolated, for external pressure or temperature sensor 7
Analog outputs	•
Number of analog outputs	3
Output type	4–20 mA, scalable, isolated
Accuracy	±0.2 % F.S. at 25 °C
Temperature dependence	±0.005% / °C full scale
	R _L : 0 Ω
External loads	R _L : 500 Ω

Property	Description/Value
Digital communication	

Serial communication

RS-485 (Modbus RTU)

Mechanical specification

Property	Description/Value
Weight	1.4 kg (3.09 lb)
	M12 5-pin male for digital output
Connectors	M12 8-pin male for analog output
	M12 4-pin female for analog input
Materials	
Probe body	AISI316L stainless steel, PPS
Filter cap	Sintered PTFE

Operating environment

Property	Description/Value
Operating environment	Outdoor use
IP rating	IP65: Dust-tight. Protected from water jets from any direction.
Operating temperature	-40 +60 °C (-40 +140 °F)
Operating humidity	0–100 %RH
Operating pressure	–500 +500 mbar
Storage temperature	-40 +60 °C (-40 +140 °F)
Storage humidity	0–90 %RH
Process pressure	–500 +500 mbar
Process temperature	+0 +60 °C (+32 +140 °F)
Process flow	0–20 m/s

Compliance

Property	Description/Value
	EMC Directive (2014/30/EU)
EU directives and regulations	REACH Regulation (EC 1907/2006)
	RoHS Directive (2011/65/EU) as amended by 2015/863
Electromagnetic compatibility (EMC)	EN 61326-1, industrial environment
Compliance marks	CE, China RoHS, FCC, ICES, RCM

Compatible devices

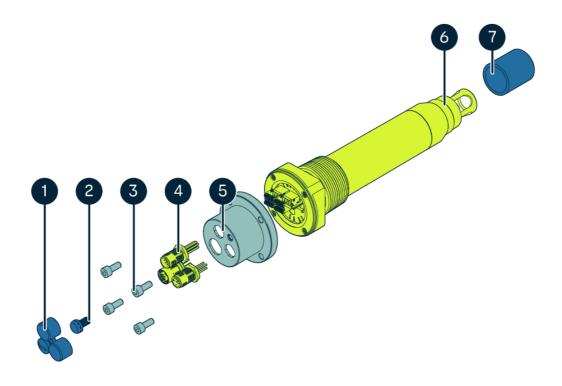
Device or series	Models
Indigo80 Handheld Indicator	Indigo80
Indigo300 Transmitter	Indigo300
Indigo500 Series Transmitters	Indigo520

Accessories and spare parts

ltem	Order code
Sintered PTFE filter (includes O-ring)	DRW249919SP
Flow-through adapter	258877
NPT 1.5 in thread test plug	257525SP
USB Service Cable M12-5F, RS-485	242659
Probe connection cable, 1 m (3 ft 3 in)	CBL210896-1MSP
Probe connection cable, 3 m (9 ft 11 in)	CBL210896-3MSP
Probe connection cable, 5 m (16 ft 5 in)	CBL210896-5MSP
Probe connection cable, 10 m (32 ft 10 in)	CBL210896-10MSP
Probe connection cable, 1 m (3 ft 3 in)	INDIGOCABLE1M
Probe connection cable, 3 m (9 ft 11 in)	INDIGOCABLE3M
Probe connection cable, 5 m (16 ft 5 in)	INDIGOCABLE5M
Probe connection cable, 10 m (32 ft 10 in)	INDIGOCABLE10M

¹ Excluding cross-interferences to other gases.

 2 Accuracy and repeatability specification at +25 °C (+77 °F) and 1013 mbar including non-linearity, calibration uncertainty, and repeatability; temperature and pressure compensated.


- ³ Time to first reading.
- ⁴ Time to specified accuracy.
- ⁵ At +20 °C (+68 °F) ambient temperature.
- ⁶ With standard PTFE filter.

⁷ The optional analog input is galvanically isolated and provides power for the connected external pressure sensor.

Recycling instructions

These recycling instructions guide you on the end-of-life treatment of this Vaisala product. As waste regulations and infrastructure vary in each country, these instructions only indicate the different components to be separated and common ways to handle them. Always follow local requirements when disposing of the product. Vaisala encourages to use the best available recycling practices to minimize related environmental impacts.

Vaisala is committed to meeting the requirements of the EU Waste Electrical and Electronic Equipment (WEEE) Directive. This directive aims to minimize the impact of electrical and electronic goods on the environment, by increasing reuse and recycling, and reducing the amount of WEEE going to landfill. This symbol indicates that the product should be collected separately from other waste streams and treated appropriately.

Recycling	Part	Material
Electrical and electronic waste	4, 6	Various
Metal waste	3, 5	Stainless steel
	1, 2	Polyamide 6
Plastic waste	7	Polytetrafluoroethylene (PTFE)

Modbus reference

Data encoding

In the data registers, the numeric values are available in one or two formats with separate register addresses: 32-bit IEEE floating point format and/or 16-bit signed integer format.

32-bit floating point or 32-bit integer format

Registers using **32-bit float** data format are encoded using the **binary32** encoding defined in IEEE 754. The format is also known as "single-precision floating point format".

The least significant 16 bits of a floating point number are placed at the Modbus register listed in the table, while the most significant 16 bits are placed in the register with number/address + 1, as specified in Open Modbus TCP Specification, Release 1.0. This is also known as "little-endian" or "Modicon" word order.

Despite the specification, some Modbus masters may expect a "big-endian" word order (most significant word first). In such case, you must select "word-swapped" floating point format in your Modbus master for the Modbus registers of the device.

A complete 32-bit floating point or 32-bit integer value should be read and written in a single Modbus transaction.

CAUTION! Reading the measurement data registers with incorrect floating point format setting may occasionally result in correct-looking, but nevertheless incorrect values.

It is highly recommended to verify that you have configured the floating point format correctly on your Modbus host system by reading a floating point value from a test value register.

16-bit integer format

Some 16-bit integer values in the data registers are scaled to include the necessary decimals. The scaling factors for those values are shown in the register tables.

Value (decimal)	Value (hexadecimal)	Description
0–32766	0x0000-0x7FFE	Value in range 0–32766
32767	0x7FFF	Value is 32767 or larger
32768	0x8000	Value is not available
32769	0x8001	Value is –32767 or smaller
32770-65535	0x8002-0xFFFF	Value in range –32766 –1 (2's complement)

Interpretation of 16-bit signed integer values

Modbus registers

Registers are numbered in decimal, starting from 1. Register addresses in actual Modbus messages (Modbus Protocol Data Unit (PDU)) are in hexadecimal and start from zero. Register number 1 corresponds to address 0x0 in the actual Modbus message.

CAUTION! Reading the wrong register(s) may result in correct-looking values. Check the reference documentation of your Modbus host (PLC) to verify which notation it uses for Modbus register addresses.

Measurement data registers

Register number (decimal)	Address (hexadecimal)	Register description	Data format	Unit
	•	Floating point values	-	-
5	0x0004	Carbon dioxide (CO ₂) concentration	32-bit float	ppm _v
7	0x0006	Carbon dioxide (CO ₂) concentration, dry basis	32-bit float	ppm _v
9	0x0008	Water (H ₂ O) concentration	32-bit float	ppm _v
11	0x000A	Water (H ₂ O) concentration, dry basis	32-bit float	ppm _v
13	0x000C	Dew point temperature	32-bit float	T _d ℃
15	0x000E	Dew / frost point temperature	32-bit float	T _{df} ℃
17	0x0010	Sensor temperature	32-bit float	Ts °C
		Integer values	-	-
259	0x0102	Carbon dioxide (CO ₂) concentration	16-bit integer	ppm _v / 100 (parts per ten thousand)
260	0x0103	Carbon dioxide (CO ₂) concentration, dry basis	16-bit integer	ppm _v / 100 (parts per ten thousand)
261	0x0104	Water (H ₂ O) concentration	16-bit integer	ppm _v / 100 (parts per ten thousand)
262	0x0105	Water (H ₂ O) concentration, dry basis	16-bit integer	ppm _v / 100 (parts per ten thousand)
263	0x0106	Dew point temperature	16-bit integer (× 10)	T _{df} ℃
264	0x0107	Dew / frost point temperature	16-bit integer (× 10)	T _{df} ℃

Configuration registers

Modbus configuration data registers (writable)

Register number (decimal)	Address (hexadecimal)	Register description	Data format	Valid range
	•	Environmental compensation	•	•
769	0x0300	Power-up value for pressure compensation	32-bit float	Range: 450–1550 hPa Init/default: 1013.25
771	0x0302	Power-up value for temperature compensation	32-bit float	Range: -10 +70 °C Init/default: 25
773	0x0304	Volatile pressure compensation (value cleared at probe reset)	32-bit float	Range 450–1550 hPa Init/default: 1013.25
775	0x0306	Volatile temperature compensation (value cleared at probe reset)	32-bit float	Range: -10 +70 °C Init/default: 25
		Function control		
1281	0x0500	Pressure compensation mode selection	Enum	 0 = Off 1 = Setpoint 2 = External
1282	0x0501	Temperature compensation mode selection	Enum	 0 = Off 1 = Setpoint 2 = Measured 3 = External
	•	Communication	•	
1537	0x0600	Serial address	16-bit integer	Valid range 1–255 Default: 240

Register number (decimal)	r Address (hexadecimal)	Register description	Data format	Valid range
		Environmental compensation		!
				Valid range 4800– 115200 4 = 4800 5 = 9600
538	0x0601	Bit rate	Enum	6 = 19200 7 = 38400 8 = 57600 9 = 115200 (default: 6 (19200))
539	0x0602	Parity, data, stop bits	Enum	0 = N,8,1 1 = N,8,2 2 = E,8,1 3 = E,8,2 4 = O,8,1 5 = O,8,2
540	0x0603	Response delay	16-bit integer	Valid range 0–1000
541	0x0604	Restart device	Function	
		Analog output 1		
793	0x0700	Analog output 1 mode selection	Enum	0 = Disabled 1 = 4-20 mA
794	0x0701	Analog output 1 measurement parameter selection. When written, scalings are reset.	Reg	0x0004 (CO ₂ wet basis) 0x0006 (CO ₂ dry basis) 0x0008 (H ₂ O wet basis) 0x000A (H ₂ O dry basis) 0x000A (H ₂ O dry basis) 0x000C (T _d)
795	0x0702	Scale low end for analog output 1 measurement parameter. Minimum and maximum values vary for different parameters.	Float	Output parameters $0x0004 (CO_2 wet)$ basis) $0x0006 (CO_2 dry)$ basis): Minimum: 0 Maximum: 1000000 Output parameters $0x0008 (H_2O wet)$ basis) $0x000A (H_2O dry)$ basis): Minimum: 0 Maximum: 250000 Output parameters $0x000C (T_d)$ $0x000E (T_{df})$: Minimum: -10 Maximum: 60
797	0x0704	Scale high end for analog output 1 measurement parameter.	Float	Output parameters

Register number (decimal)	Address (hexadecimal)	Register description	Data format	Valid range
*		Environmental compensation		
(decimal)	(hexadecimal)			0x0004 (CO ₂ wet basis) 0x0006 (CO ₂ dry basis): Minimum: 0 Maximum: 1000000 Output parameters 0x0008 (H ₂ O wet basis) 0x000A (H ₂ O dry basis) Minimum: 0 Maximum: 250000 Output parameters 0x000C (T _d) 0x000E (T _{df}):
1799 1801	0x0706 0x0708	Error output level (mA) Low clipping limit	Float	Minimum: -10 Maximum: +60 Min. 0.5 mA Max. 24 mA 0–2.5 %
1803	0x070A	Low error limit	Float	0–1025 %
805	0x070C		Float	0–12.5 %
807	0x070E	High error limit	Float	0–1025 %
		Analog output 2		
2049	0×0800	Analog output 2 mode selection	Enum	0 = Disabled 1 = 4–20 mA
2050 2051	0x0801 0x0802	Analog output 2 measurement parameter selection. When written, scalings are reset. Scale low end for analog output 2	Reg	0x0004 (CO ₂ wet basis) 0x0006 (CO ₂ dry basis) 0x0008 (H ₂ O wet basis) 0x000A (H ₂ O dry basis) 0x000A (H ₂ O dry basis) 0x000C (T _d) 0x000E (T _{df})
		measurement parameter. Minimum and maximum values vary for different parameters.		0x0004 (CO2 wetbasis)0x0006 (CO2 drybasis):Minimum: 0Maximum: 1000000Output parameters0x0008 (H2O wetbasis)0x000A (H2O drybasis):Minimum: 0Maximum: 250000

Register number (decimal)	Address (hexadecimal)	Register description	Data format	Valid range
		Environmental compensation	·	
				Output parameters
				0x000C (T _d)
				0x000E (T _{df}):
				Minimum: -10
				Maximum: +60
				Output parameters
				0x0004 (CO ₂ wet
				basis)
				0x0006 (CO ₂ dry
				basis):
				Minimum: 0
				Maximum: 1000000
				Output parameters
		Scale high end for analog output 2 measurement parameter.		0x0008 (H ₂ O wet
053	0x0804	Minimum and maximum values	Float	basis)
		vary for different parameters.		0x000A (H ₂ O dry basis):
				Minimum: 0
				Maximum: 0 Maximum: 250000
				Output parameters
				0x000C (T _d)
				ŭ
				0x000E (T _{df}):
				Minimum: -10
				Maximum: +60
055	0x0806	Error output level (mA)	Float	Min. 0.5 mA
057	0x0808	Low clipping limit	Float	Max. 24 mA 0–2.5 %
059	0x080A	Low error limit	Float	0-1025 %
061	0x080C	High clipping limit	Float	0–12.5 %
063	0x080E	High error limit	Float	0–1025 %
	-	Analog output 3		1
305	0x0900	Analog output 3 mode selection	Enum	0 = Disabled
	0,0000			1 = 4–20 mA
				0x0004 (CO ₂ wet
				basis)
				0x0006 (CO ₂ dry basis)
		Analog output 3 measurement		0x0008 (H ₂ O wet
306	0x0901	parameter selection. When	Reg	basis)
		written, scalings are reset.		0x000A (H ₂ O dry
				basis)
				0x000C (T _d)
				0x000E (T _{df})
307	0x0902	Scale low end for analog output 3	Float	Output parameters
		measurement parameter.		0x0004 (CO ₂ wet
		Minimum and maximum values		basis)
		vary for different parameters.		0x0006 (CO ₂ dry
				basis):
				Minimum: 0
				Maximum: 1000000
	1			Output parameters

Register number (decimal)	Address (hexadecimal)	Register description	Data format	Valid range
	·	Environmental compensation		
		Environmental compensation		0x0008 (H_2O wet basis) 0x000A (H_2O dry basis): Minimum: 0 Maximum: 250000 Output parameters 0x000C (T_d) 0x000E (T_{df}): Minimum: -10 Maximum: +60 Output parameters
2309	0x0904	Scale high end for analog output 3 measurement parameter. Minimum and maximum values vary for different parameters.	Float	0x0004 (CO_2 wet basis) 0x0006 (CO_2 dry basis): Minimum: 0 Maximum: 1000000 Output parameters 0x0008 (H_2O wet basis) 0x000A (H_2O dry basis): Minimum: 0 Maximum: 250000 Output parameters 0x000C (T_d) 0x000E (T_{df}): Minimum: -10 Maximum: +60
2311	0x0906	Error output level (mA)	Float	Min. 0.5 mA Max. 24 mA
2313	0x0908	Low clipping limit	Float	0–2.5 %
315	0x090A	Low error limit	Float	0–1025 %
317	0x090C	High clipping limit	Float	0–12.5 %
319	0x090E	High error limit	Float	0–1025 %
		Analog input 1		
2562	0x0A01	Analog input 1 compensation parameter. Read-only: controlled by the pressure and temperature compensation mode registers.	Reg	0x0204 (pressure) 0x0206 (temperature
2563	0x0A02	Scale low end for analog input 1 compensation parameter. Minimum and maximum values vary for different parameters.	Float	0x0204 (pressure) Minimum: 0 Maximum: 20 000 0x0206 (temperature Minimum: -200 Maximum: +400
2565	0x0A04	Scale high end for analog input 1 compensation parameter. Minimum and maximum values vary for different parameters.	Float	Maximum: +400 0x0204 (pressure) Minimum: 0 Maximum: 20 000 0x0206 (temperature

Register number (decimal)	Address (hexadecimal)	Register description	Data format	Valid range
		Environmental compensation		
				Minimum: -200
				Maximum: +400
2567	0x0A06	Input value (read-only)	Float	

Status registers

Modbus status data registers (read-only)

Register number (decimal)	Address (hexadecimal)	Register description	Data format	Bitmask
513	0x0200	Device status code low	32-bit signed integer	See Error codes in register 0x0200 (status code low).
515	0x0202	Device status code high	32-bit signed integer	See Error codes in register 0x0202 (status code high).
517	0x0204	Pressure compensation values in use	Float	
519	0x0206	Temperature compensation values in use	Float	
523	0x020A	CO ₂ measurement status	16-bit signed integer	0x0000 : Unsupported 0x0001 : Reading is not reliable
524	0x020B	CO ₂ measurement status (dry basis)	16-bit signed integer	0x0002: Under range 0x0003: Over range
525	0x020C	H ₂ O measurement status	16-bit signed integer	0x0004: Noisy 0x0005: Value locked
526	0x020D	T _{df} measurement status	16-bit signed integer	0x0006: Calibration expired
527	0x020E	T _s measurement status	16-bit signed integer	0x0007 : Sensor failure 0x0008 : Measurement not ready
528	0x020F	Device status	16-bit signed integer	0x0000: Critical failure 0x0001: Error 0x0002: Warning 0x0003: Notification
529	0x0210	Clear error log: the error log is cleared if 1 is written, other values are ignored. Register always reads as 0.	Function	
530	0x0211	Analog input level	Float	
532	0x0213	Analog input value	Float	

Error codes in register 0x0200 (status code low)

Bitmask	Error message	Severity
0x0000	Firmware checksum mismatch.	Critical
0x0001	Device settings corrupted.	Critical
0x0009	Infrared source temperature too high.	Error
0x0010	Infrared source failure.	Error
0x0011	Infrared source failure.	Error
0x0012	Supply voltage out of range.	Error
0x0013	Internal voltage out of range.	Error
0x0014	Sensor signal low.	Error
0x0015	Sensor signal low.	Error
0x0016	Internal voltage out of range.	Error
0x0017	Sensor signal distorted.	Error
0x0018	Sensor signal distorted.	Error

Bitmask	Error message	Severity
0x0020	CO ₂ measurement out of range.	Error
0x0021	H ₂ O measurement out of range.	Error
0x0022	T _d measurement out of range.	Error
0x0023	Sensor heater failure.	Error
0x0024	Infrared source temperature too high.	Error
0x0025	Internal temperature too high.	Error
0x0026	Temperature measurement error.	Error
0x0027	Supply power insufficient for analog input.	Error
0x0028	Analog input 1 out of range.	Error
0x0030	Internal temperature error.	Error
0x0031	Supply power insufficient for operation.	Error

Error codes in register 0x0202 (status code high)

Bitmask	Error message	Severity
0x0032	Sensor signal low.	Warning
0x0033	Sensor signal low.	Warning
0x0034	Internal temperature high.	Warning
0x0035	Sensor signal distorted.	Warning
0x0036	Sensor signal distorted.	Warning
0x0037	Sensor signal distorted.	Warning
0x0038	Unexpected device restart.	Warning
0x0039	Calibration has expired.	Warning
0x0042	Infrared source temperature out of range.	Warning
0x0043	Supply power insufficient for analog input.	Warning
0x0044	Infrared source temperature out of range.	Warning
0x0048	Heater off.	Info
0x0049	Calibration is about to expire.	Info

Device identification objects

Device identification objects

Object ID (decimal)	Object ID (hexadecimal)	Object name	Example contents
0	0x00	VendorName	"Vaisala"
1	0x01	ProductCode	"MGP241 "
2	0x02	MajorMinorVersion	Software version (for example "1.2.3")
3	0x03	VendorUrl	"http://www.vaisala.com/"
4	0x04	ProductName	"Vaisala Multigas Probe MGP241"
128	0x80	SerialNumber ¹	Probe serial number (for example, "R0710040")
129	0x81	Calibration date ¹	Date of the factory calibration
130	0x82	Calibration text ¹	Information text of the factory calibration

¹ Vaisala-specific device information object.

Warranty

For standard warranty terms and conditions, see vaisala.com/warranty.

Please observe that any such warranty may not be valid in case of damage due to normal wear and tear, exceptional operating conditions, negligent handling or installation, or unauthorized modifications. Please see the applicable supply contract or Conditions of Sale for details of the warranty for each product.

Technical support

Contact Vaisala technical support at helpdesk@vaisala.com. Provide at least the following supporting information as applicable:

- Product name, model, and serial numberSoftware/Firmware version
- Name and location of the installation site
- Name and contact information of a technical person who can provide further information on the problem

For more information, see vaisala.com/support.